An FT-IR Study of Crown Ether–Water Complexation in Supercritical CO₂

Anne Rustenholtz,[†] John L. Fulton,[‡] and Chien M. Wai^{*,†}

Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, and Fundamental Science Division, Pacific Northwest National Laboratory, P.O. Box 999, MS P8-19, Richland, Washington 99352

Received: June 24, 2003; In Final Form: September 25, 2003

In the presence of 18-crown-6, D₂O forms a 1:1 complex with the macrocyclic molecule in supercritical fluid CO_2 with two different configurations. The D_2O molecule can be bonded to two oxygen atoms of the crown cavity in a bridged configuration that is characterized by a broad peak at 2590 cm⁻¹. The D_2O molecule can also form one hydrogen bond with an oxygen atom of the crown cavity that can be characterized by two peaks at 2679 and 2733 cm⁻¹, with the former assigned to the hydrogen-bonded O–D stretching and the latter the unbonded O–D stretching. The equilibrium constants of the two configurations in supercritical CO_2 have been calculated. The enthalpy of formation is -12 ± 2 kJ mol⁻¹ for the single-hydrogen-bond complex and -38 ± 3 kJ mol⁻¹ for the bridged configuration complex. At high 18-crown-6 to D₂O ratios, the formation of another complex in supercritical CO₂ that involves one D₂O molecule hydrogen bonded to two 18-crown-6 molecules becomes possible.

Introduction

Supercritical fluids have unique properties that make them highly attractive for extraction of metal ions from liquid and solid materials.¹⁻³ Carbon dioxide is most widely used for supercritical fluid applications because of a number of advantages including (i) low toxicity, (ii) environmentally benignity, (iii) low cost, (iv) moderate critical constants ($T_c = 31$ °C and $P_{\rm c} = 73.7$ bar), and (v) tunable solvation strength that varies with density. Selective extraction of metal species using a nonpolar solvent such as CO₂ requires special chelating agents that should possess ion recognition ability and be soluble in supercritical fluid carbon dioxide (SF-CO₂).¹⁻³ Crown ethers have been extensively used for extraction of alkali-metal and alkaline-earth-metal cations from aqueous solutions into organic solvents.⁴⁻⁹ The relatively high solubility of crown ethers in liquid and supercritical CO₂ and their selectivity for the alkalimetal and the alkaline-earth-metal ions make them attractive for environmental applications such as CO2-based nuclear waste management technology that would result in minimum liquid waste generation.

For the extraction of metal ions from aqueous solutions using ligands dissolved in SF-CO₂, the fluid phase will be saturated with water. Thus, water interaction with the ligand in the fluid phase plays an integral role in the extraction process.^{2,9} It has been reported that the extraction efficiency of alkali-metal ions in conventional solvent processes depends on the solubility of water in the organic phase using macrocyclic polyethers as a complexing agent.9 With crown ethers, both computational simulation¹⁰ and spectroscopic studies^{11,12} show that, in organic solvents, the water can bond to a macrocyclic host molecule by two different types of hydrogen bonding. The first type is composed of a single hydrogen bond between one hydrogen atom of a water molecule and one oxygen atom of the crown

ether cavity. In this case, the water molecule is mostly located outside the cavity. The second type occurs inside the cavity and is composed of a water molecule bridging between two different oxygen atoms of the crown cavity.

FT-IR is a sensitive and qualitative technique that has been used during the past few years to study hydrogen bonding in different solvents.^{12–16} For example, Fulton et al.¹³ used this technique to explore hydrogen bonding of methanol dissolved in supercritical carbon dioxide and found that a weak interaction between carbon dioxide and methanol significantly reduced the amount of methanol-methanol hydrogen bonding. Johnston et al. used it to understand the solvent effect on hydrogen bonding in supercritical fluids.¹⁴ They were able to determine, with a good accuracy, the equilibrium constants and other thermodynamics data for the hydrogen bond between methanol and triethylamine. The FT-IR technique has also been used by Moyer et al.¹² to determine how water is bonded to crown ethers in carbon tetrachloride. These authors assigned vibrational bands to free water and to two different kinds of hydrogen bonds mentioned above. In this paper we examine the interactions of water and 18-crown-6 in liquid and supercritical CO₂ for the purpose of establishing a basis for using this green solvent in extraction processes utilizing crown ethers as extractants.

Experimental Section

A specially designed high-pressure IR cell capable of operation to 500 bar was used for this study. The 9.2 mL internal volume cell is built in stainless steel block. The infrared beam is focused along two conical holes and passes through two small diamond windows providing a path length of 100 μ m. The cell has one observation window (sapphire) sealed with a gold-plated metal V-ring seal, which allows visual determination of the number of phases present inside the cell. For quantitative analysis it is essential to avoid formation of a second aqueous phase on the beam path windows, which would interfere with data collection. A Teflon-coated magnetic stirring bar was introduced into the cell, allowing stirring of the solution while the cell was placed inside an FT-IR spectrometer.

^{*} To whom correspondence should be addressed. E-mail: cwai@ uidaho.edu.

[†] University of Idaho.

[‡] Pacific Northwest Laboratory.

Figure 1. Scheme of the three possible bondings between D_2O and 18-crown-6: (a) bridge bonding; (b) single bonding; (c) 1:2 complex in a sandwich configuration.

A syringe pump (ISC0, model 100DX) was used to supply liquid CO₂ to the cell that was preloaded with the starting chemicals. The pressure was measured using an electronic transducer (Precise Sensor Inc., model D451-10) with a ± 1 bar accuracy. The cell was placed on a lightweight ceramic stand, thermally isolated with an insulation coat, and heated using four electric cartridge heaters. The temperature was controlled with a controller (Watlow) having a ± 1 °C accuracy. A Bruker IFS 66v FT-IR spectrometer with a mercury-cadmium-telluride (MCT) detector (Kolmar Technologies) was used to acquire all IR spectra. To obtain a good signal-to-noise ratio, the acquisition time was set at 5 min (corresponding to approximately 2350 scans), the scanner velocity was 80 kHz set for 4 cm⁻¹ resolution. A background spectrum of the empty cell (with diamond windows) was subtracted from each sample spectrum. Deuterated water (D₂O) was used rather than H₂O to avoid overlapping of water and intense CO₂ absorption bands between 3500 and 3800 cm⁻¹. The existence of weak 18-crown-6 bands between 2760 and 2680 cm⁻¹ (C-H stretch) which overlap with the D₂O signal required a spectrum of the pure crown ether in CO₂, at the same temperature and pressure, to be subtracted from the sample spectrum for background correction.

D₂O (100% D, 99.96% pure), 18-crown-6 (99.5% pure), dicyclohexano-18-crown-6 (98% pure), methanol-*d* (99.5+ atom % D), and carbon tetrachloride (99.9% pure) were purchased from Aldrich Chemical Co. and used without further purification. Carbon dioxide was obtained as supercritical fluid chromatography (SFC) grade (purity >99.99%) from Scott Specialty Gases Inc. The pure CO₂ density varies in this study between 0.66 and 1.04 g mL⁻¹ by tuning the temperature between 25 and 70 °C and the pressure between 200 and 400 bar. The pure CO₂ density was determined using a reported table from the NIST (National Institute of Standards and Technology) Chemistry WebBook.

To avoid water contamination from the atmosphere, the cell was purged with nitrogen and the chemicals were handled and introduced using a glovebox purged with nitrogen. The solutions were stirred for 20–30 min to reach equilibrium after each density or concentration change. Longer equilibrium times were briefly explored, but no significant change in the IR spectra was observed. Curve fitting and other spectrum analysis and corrections have been performed with standard spectral software (OPUS, Bruker Optiks).

Results and Discussion

To study the nature of crown-water hydrogen bonding in liquid and SF-CO₂, we examined FTIR spectra of a series of mixtures with 18-crown-6 concentrations varied from 0 to 0.25

mol L^{-1} and the total D_2O concentration fixed at 49 mmol L^{-1} . The D_2O concentration was below the known solubility of water in pure CO_2^{18} under our experimental conditions. This fact was supported by the observation of a single phase for all the CO_2 experiments conducted in this study.

Peak Assignment. FT-IR spectra for different crown ether concentrations (0–0.25 mol L^{-1}) and a fixed D₂O concentration $(0.049 \text{ mol } L^{-1})$ are shown in parts a and b of Figure 2 for liquid and SF-CO₂, respectively. Peaks for the free D₂O, i.e., D₂O dissolved in SF-CO₂ without the crown ether (O-D stretching, asymmetric at 2761 cm⁻¹ and symmetric at 2654 cm^{-1}), can be easily discerned, and their positions are in agreement with those reported for D₂O molecules in the vapor (i.e., 2789 and 2666 cm⁻¹ for the D₂O vapor).¹⁹ The shifts of the D₂O vibrational stretchings to lower wavenumbers in SF-CO₂ relative to those of single molecules in the vapor phase reflect the interactions of D₂O molecules with CO₂ in the fluid phase. When 18-crown-6 was added to the CO₂ solution, three other peaks at 2733, 2679, and 2590 cm⁻¹ appeared. According to the order of peak assignment of H_2O-18 -crown-6 complex in carbon tetrachloride,12 the broad peak at 2590 cm⁻¹ should correspond to the symmetrical stretch of the O-D bond involved in the two-hydrogen-bond bridge as illustrated in Figure 1a. The D₂O molecule with one hydrogen bond to the cavity oxygen is expected to have two stretching bands. The sharp O-D band at 2733 cm⁻¹ should be the unbonded O–D stretching marked as 2 in Figure 1b. The bonded O-D stretching band (marked as 1 in Figure 1b) was assigned to the 2679 cm^{-1} peak, located between the symmetrical and the asymmetrical stretching bands of free water. In the FT-IR spectra of the H₂O-18-crown-6 complex in CCl₄, the bonded O-H stretching band was found at a lower energy than the symmetrical stretch band of free water. We confirmed our assignment of this bonded O-D band by completing two secondary experiments. One experiment was a comparison of the FTIR spectra of 18-crown-6-H₂O and 18crown-6-D₂O complexes in CCl₄. We confirmed the peak assignment of the former as reported in the literature, and the D₂O isotopic effect altered the peak order of the latter as shown in Figure 2. In another experiment, we confirmed that the order and assignment of the various O-D bands in the 18-crown-6-D₂O complex in SF-CO₂ were the same in both CCl₄ and liquid CO₂.

We also obtained the FT-IR spectra of methanol-*d* mixed with the crown ether in supercritical CO₂ (Figure 3a). The peaks between 2860 and 3100 cm⁻¹ correspond to the stretching of the C-H bonds belonging to the methanol-*d* molecule. Due to a different O-D bond energy for methanol-*d* vs D₂O, the peak maximum of the O-D stretching mode for methanol-*d* is shifted

Figure 2. FT-IR spectra of free and bonded D_2O at different 18-crown-6 concentrations (0-0.25 mol L^{-1}) and at one fixed D_2O concentration (0.049 mol L^{-1}) in liquid (a, 25 °C and 400 bar) and supercritical (b, 40 °C and 400 bar) CO₂.

Figure 3. (a) Free methanol-*d* (0.17 mol L^{-1}) and methanol-*d* (0.17 mol L^{-1}) complexed to 18-crown-6 (0.02 mol L^{-1}) in CO₂ (40 °C and 200 bar). (b) Free D₂O (49 mmol L^{-1}) and D₂O (49 mmol L^{-1}) complexed to dicyclo-18-crown-6 (0.06 mol L^{-1}) in CO₂ (40 °C and 300 bar). (c) D₂O (respectively 17 and 49 mmol L^{-1}) complexed to 18-crown-6 (respectively at 0.40 mol L^{-1}), 0.041 (- - -), and 0.123 (---) mol L^{-1}) in CO₂ at, respectively, 40 °C and 200 bar.

to a higher energy. Nevertheless, both asymmetric and symmetric free O–D stretching peaks (respectively at 2841 and 2701 cm⁻¹) were observed in the spectra shown in Figure 3a. Moreover, only the bonded O–D stretching band (similar to 1 in Figure 1b) appeared at the expected position (i.e., 2609 cm^{-1}). These observations provided further support for our peak assignment.

Recent molecular dynamic simulation studies performed by Wipff et al.²⁰ for 18-crown-6 and water in SF-CO₂ suggest that most of the water molecules were bridge bonded to crown ether in the D_{3d} conformation. The observation of a singly bonded water to a crown complex in our experiments could be due to the flexibility of the macrocyclic molecule; 18-crown-6 can be in various conformations that may favor a singly or a doubly

bonded water molecule. The 18-crown-6 cavity in dicyclohexano-18-crown-6 is forced by its geometry into the D_{3d} conformation and is supposed to be rigid. The FT-IR spectra of D₂O with and without dicyclohexano-18-crown-6 in SF-CO₂ are shown in Figure 3b. The spectrum shows that the free D₂O stretching bands are observed at 2761 (asymmetric) and 2653 (symmetric) cm⁻¹. For the D₂O with crown solution both single hydrogen bonding (at 2701 (bonded) and 2732 (unbonded) cm⁻¹) and double hydrogen bonding (at 2591 cm⁻¹) with the oxygen atoms of the macrocyclic cavity, similar to that found in 18-crown-6, are observed. The difference between our spectroscopic study and Wipff's molecular dynamic simulation may be due to differences in species concentrations and CO₂ densities used in the simulation study.

TABLE 1: Apparent Molar Absorptivity at Different CO₂ Densities^a

3 403
25
57 1.035
24
93
39
1 463
3 255
) 9 1 5 8:

 ${}^{a}\epsilon_{1}$, free D₂O asymmetric (2761 cm⁻¹) stretching band; ϵ_{2} , free D₂O symmetric (2654 cm⁻¹) stretching band; ϵ_{3} , doubly bonded D₂O to crown band (at 2593 cm⁻¹); ϵ_{4} and ϵ_{5} , C–H stretch band of 18-crown-6 at 2872 and 2947 cm⁻¹, respectely.

1:2 Complex Formation. When the 18-crown-6 concentration exceeds 0.4 mol L^{-1} with a lower water concentration (less than 17 mmol L^{-1}), only one absorption band at 2590 cm⁻¹ is observed (Figure 3c). All the D₂O molecules seem to be bridge bonded to the crown ether. This observation may be explained by the formation of a 1:2 complex between D₂O and 18-crown-6 as illustrated in Figure 1c. The O-D stretching band for this kind of complex should appear at the same frequency as that of the bridged form of D₂O (Figure 1a configuration). Our suggestion of 1:2 complex formation is based on the assumption that, by increasing the crown ether to water ratio in SF-CO₂, we do not change the equilibrium between D₂O molecules bonded to one oxygen atom (configuration 1b) or to two oxygen atoms (configuration 1a) of the cavity. As the concentration of 18-crown-6 in the system increases, it is conceivable that the singly bonded D₂O molecule (configuration 1b) would form a hydrogen bond with another crown molecule via the unbonded O-D, thus leading to the formation of a 1:2 complex. The law of mass action should favor the shifting of equilibrium from a 1:1 complex to a 1:2 complex between water and 18-crown-6 in SF-CO₂. Also in Figure 3c, we show, for comparison, spectra of the double bond area of 18-crown-6 (at 0.041 and 0.123 M) and D₂O (0.049 M) at 400 bar and 40 °C. Peaks occur at the same position for both the dimer and the monomer forms.

The sandwich form (configuration 1c) is a probable conformation for the 1:2 complex, but other configurations (e.g., from offset to perpendicular) can be envisaged. Formation of 1:2 complexes has been reported for crown ether extraction of metal ions from aqueous solutions where a metal ion can bind to two crown cavities to form a sandwich complex. We are not aware of any previous report regarding 1:2 complex formation between water and crown molecules. Our experimental data indicate that, with increasing crown to D₂O ratios in the SF-CO₂ system, the intensities of the single-hydrogen-bond D₂O stretching peaks (2733 and 2679 cm⁻¹) decreases and that of the peak at 2590 cm⁻¹ increases. Although the 1:2 complex forms at high crown to D₂O ratios, we cannot distinguish the bridging 1:1 complex (configuration 1a) and the 1:2 complex (configuration 1c) from the FT-IR spectra.

Molar Absorptivity Calculation. A number of experimental parameters (e.g., path length change, radiation of the cell, etc.) can influence molar absorptivity values in addition to pressure and temperature effects in SF-CO₂ as reported in the literature.²² Therefore, for quantitative discussion of FT-IR data, molar absorptivity should be evaluated for each SF-CO₂ condition.²¹

The molar absorptivities for free D₂O dissolved in CO₂ (Table 1 and Figure 4) were determined by the analysis of FT-IR spectra with pure D₂O of known concentrations. The apparent molar absorptivity of D₂O, in liquid and supercritical CO₂, increases with the fluid density. This behavior is similar to that reported for pyrene and anthracene²¹ in CO₂ solutions. In our system, the molar absorptivity for the asymmetric stretching band of the free D₂O at 2761 cm⁻¹ is more than doubled for an

Figure 4. Apparent molar absoptivity at different CO₂ densities: (**II**) free D₂O asymmetric (ϵ_1 at 2761 cm⁻¹) stretching bands; (**II**) free D₂O symmetric (ϵ_2 at 2654 cm⁻¹) stretching bands; (**A**) doubly bonded D₂O to crown (at 2593 cm⁻¹); (**A**, \diamond) C–H stretch band of 18-crown-6 at 2872 and 2947 cm⁻¹, respectively.

increase in CO₂ density from 0.66 to 1.04 g mL⁻¹. The molar absorptivities of the C–H stretching vibrations of pure 18crown-6 dissolved in CO₂ at its maximum intensity (2872 cm⁻¹) and at 2947 cm⁻¹ are also given in Figure 4. A 20% decrease in molar absorptivity is observed for both wavenumbers when the CO₂ density varies from 0.65 to 1.0 g mL⁻¹. Because of the stability of those C–H stretches, this decrease might reflect changes in molecular absorptivities due to experimental parameters and needs to be considered to determine true molecular absorptivities. Molar absorptivity changes for free D₂O stretching vibrations might be caused by a change in solute–solvent interaction and in solvent refractive index.

The molar absorptivity of the bridging 1:1 complex was determined in the following way. We assumed that the molar absorptivities of the 1:1 bridge complex and the 1:2 complex were similar. Thus, the molar absorptivity of the bridged 1:1 complex could be obtained from the region with high 18-crown-6 to D₂O ratios in SF-CO₂. Its value (Table 1 and Figure 4) at 2593 cm⁻¹ does not seem to be affected by the change in density. However, the weak solubility limit of 18-crown-6 at low CO₂ density did not permit this calculation for a density below 0.8 g mL⁻¹.

Equilibrium Constants and Enthalpy Calculations. The formation of a 1:1 complex between 18-crown-6 and D_2O in

Crown Ether-Water Complexation in Supercritical CO₂

Figure 5. Density effect on equilibrium constants K_s (\bullet) and K_b (\blacktriangle). The pressure varies from 200 to 400 bar at constant temperature (40 °C). [18C6] = 41 mmol.L⁻¹. [D₂O] = 49 mmol.L⁻¹.

the CO_2 phase at a lower crown to D_2O molecular ratio was evaluated by the analysis of the FT-IR data and the equilibrium relations of the following equations:

$$18C6 + D_2O \leftrightarrows 18C6 \cdot D_2O^{\text{single}}$$
(1)

$$K_s = ([18C6 \cdot D_2O^{\text{single}}])/([18C6][D_2O])$$

$$18C6 + D_2O \leftrightarrows 18C6 \cdot D_2O^{\text{bridge}}$$
(2)

$$K_{\rm b} = ([18C6 \cdot D_2 O^{\rm ondge}])/([18C6][D_2 O])$$

where K_s and K_b represent the equilibrium constants for the 1:1 complex with a single hydrogen bond and double hydrogen bonds, respectively. The total bonded water concentration for equilibrium constant calculations was calculated from the free water concentration (deduct from its molar absortivity) and the total concentration introduced in the cell. The K values vary considerably with CO₂ density. At a constant pressure (200 bar), the K_s value decreases from 21 ± 2 to 13 ± 1 L mol⁻¹ with an increase in temperature from 25 to 60 °C. The variation of $K_{\rm b}$ with temperature is even greater for the same pressure; its value varies from 14 ± 2 to 2 ± 1 L mol⁻¹ from 25 to 60 °C. These K values are comparable to the one reported by Moyer et al. (i.e., $15.6(1.2) \text{ L mol}^{-1}$) for the 18-crown-6-H₂O complex in carbon tetrachloride. This implies that, in terms of hydrogen bonding between water and 18-crown-6, liquid CO₂ and supercritical CO₂ behave as nonpolar solvents such as CCl₄ and not chloroform. The K value of the 18-crown-6 $-H_2O$ complex in chloroform was reported to be 20 times larger than that in CCl₄.

The influence of density (increase in pressure from 200 to 400 bar) at a constant temperature (i.e., 40 °C) on the two equilibrium constants K_s and K_b is shown in Figure 5. An increase in density causes a decrease in the K_s and K_b values.

The molar enthalpy of a hydrogen bond (ΔH_i) can be determined from the equilibrium constant at constant pressure by eq 4 from well-known thermodynamic relations (eq 3),¹⁷ where *T* is the absolute temperature in (K) and *R* the ideal gas constant.

$$\left(\frac{\partial(\Delta G_i)}{\partial T}\right)_P = -\Delta S_i = \frac{\Delta G_i - \Delta H_i}{T} \quad \text{and} \quad \Delta G_i^\circ = -RT \ln K_i$$
(3)

$$\left(\frac{\partial(\ln K_i)}{\partial(1/T)}\right)_P = -\frac{\Delta H_i}{R} \tag{4}$$

Using a linear regression on the plot of $\ln K$ versus 1/T (Figure 6), and assuming that ΔH is independent of temperature and

Figure 6. Dependence of $\ln K_s$ (\bullet) and $\ln K_b$ (\blacktriangle) on 1000/*T* at 200 bar for [18C6] = 41 mmol L⁻¹ and [D₂O] = 49 mmol L⁻¹.

Figure 7. Concentration of the two isomers (i.e., single bond (\bullet) and double bond (\blacktriangle)) between D₂O (49 mmol L⁻¹ total concentration in CO₂) and the 18-crown-6 (83 mmol L⁻¹ total concentration in CO₂) versus temperature (°C).

density, the $\Delta H_{\rm s}$ (for a single hydrogen bond, configuration 1b) was found to be -12 ± 2 kJ mol⁻¹ and $\Delta H_{\rm b}$ (for bridge bonding, configuration 1a) to be -38 ± 3 kJ mol⁻¹, both at 200 bar. The complexation process is exothermic as expected for hydrogen bonding, and its value is similar to the literature values for hydrogen-bonding processes in both liquid solvents and supercritical fluids. The facts that the hydrogen-bonding process is exothermic and that the bonded species are more entropically ordered explain the decrease of *K* values with the increase of temperature.

Isomeric Ratio of the Crown–Water Complex. The relative concentrations of the singly bonded and the doubly bonded water–crown complexes change with temperature as shown in Figure 7. At a low crown to water mole ratio (about 0.8), the trend is similar for both isomers. When the temperature is increased from 25 to 50 °C at 200 bar, the concentrations of both the singly bonded and the doubly bonded complexes tend to decrease (Figure 7). The decrease for the doubly bonded complex is perhaps slightly faster than the decrease for the singly bonded complex. This can be explained by an entropy effect; i.e., at higher temperatures the more disordered form should be favored.

At a high crown to water mole ratio (i.e., superior to 1.7), the concentration of the bridged species decreases whereas the concentration of the single-bond species increases when the temperature increases from 25 to 50 °C at a fixed pressure of 200 bar (Figure 8). This observation also appears to support the formation of a 1:2 complex. As expected in terms of entropy, at higher temperatures the 1:2 complex form probably would break down to form a singly bonded 1:1 crown–D₂O complex and unbonded crown ether. Thus, even if the singly bonded species dissociate with rising temperature, the total amount still increases due to the breakdown of the 1:2 complex form.

Figure 8. Concentration of the two isomers (i.e., single bond (\bullet) and double bond (\blacktriangle) between D₂O (49 mmol L⁻¹ total concentration in CO₂) and the 18-crown-6 (41 mmol L⁻¹ total concentration in CO₂) versus temperature (°C).

Conclusions

FT-IR is a sensitive technique for studying crown ether and water interactions in SF-CO₂. The O-D stretching vibrations for D₂O dissolved in SF-CO₂ show slight shifts to lower wavenumbers relative to those found for D₂O in its vapor phase, indicating interactions (salvation) of CO₂ with D₂O molecules in the supercritical fluid phase. In the presence of 18-crown-6, D₂O forms a 1:1 complex with the macrocyclic molecule with two different configurations. The D₂O molecule can form one hydrogen bond with an oxygen atom of the crown cavity, or it can be bonded to two oxygen atoms of the cavity in a bridged configuration. The equilibrium constant of the single-hydrogenbond configuration is slightly greater than the two-hydrogenbond configuration, and both equilibrium constants decrease with increasing temperature. The enthalpy of the complex formation is -12 ± 2 kJ mol⁻¹ for the former and -38 ± 3 kJ mol⁻¹ for the latter. These values are within the range of hydrogen bonds reported in liquid solvents. At high 18-crown-6 to D₂O ratios, formation of a 1:2 complex in SF-CO₂ that involves one D₂O molecule hydrogen bonded to two crown ether molecules becomes possible.

Acknowledgment. This work was supported by the DOE Office of Environment Management, EMSP Program (Grant No.

DE-FG07-98ER 14913). Work by J.L.F. was supported by the Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy, under Contract DE-AC06-76RLO 1830 with Pacific Northwest National Laboratory.

References and Notes

(1) Lin, Y.; Smart, N. G.; Wai, C. M. Trends Anal. Chem. 1995, 14 (3), 123.

(2) Wai, C. M.; Lin, Y.; Brauer, R. D.; Wang, S.; Beckert, W. F. Talanta 1993, 40, 1325.

(3) Laintz, K. E.; Wai, C. M.; Yonker, C. R.; Smith, R. D. Anal. Chem. 1992, 64 (22), 2875.

(4) Iwacho, T.; Sadakane, A.; Tôei, K. Bul. Chem. Soc. Jpn. 1978, 51 (2), 629.

(5) Kolthoff, I. M. Can. J. Chem. 1981, 59, 1548.

(6) Shamsipur, M.; Popov, A. I. J. Phys. Chem. 1987, 91, 447.

(7) Kolthoff, I. M.; Chantooni, M. K., Jr. J. Chem. Eng. Data 1997, 42, 49.

(8) Talanova, G. G.; Elkarim, N. S. A.; Talanov, V. S.; Hanes R. E., Jr.; Hwang, H.; Bartsch, R. A.; Rogers, R. D. J. Am. Chem. Soc. **1999**, *121*, 11281.

(9) Dietz, M. L.; Horwitz, E. P.; Rhoads, S.; Bartsch, R. A.; Krzykawski, J. Solvent Extr. Ion Exch. **1996**, 14 (1), 1.

(10) Rhangino, G.; Romano, S.; Lehn, J. M.; Wipff G. J. Am. Chem. Soc. 1985, 107, 7873.

(11) Northlander, E. H.; Burns J. H. Inorg. Chim. Acta 1986, 115, 31.

(12) Bryan, S. A.; Willis, R. R.; Moyer, B. A. J. Phys. Chem. 1990, 94, 5230.

(13) Fulton, J. L.; Yee, G. G.; Smith, R. D. J. Am. Chem. Soc. 1991, 113, 8327.

(14) Gupta, R. B.; Combes, J. R.; Johnston, K. P. J. Phys. Chem. 1993, 97, 707.

(15) Yamamoto, M.; Iwai, Y.; Nakajima, T.; Arai Y. J. Phys. Chem. A 1999, 103, 3525.

(16) Xu, Q.; Han, B.; Yan, H. J. Phys. Chem. A 1999, 103, 5240.

(17) O'Shea, K. E.; Kirmse, K. M.; Fox, M. A.; Johnston, K. P. J. Phys. Chem. 1991, 95, 7863.

(18) Jackson, K.; Bowman, L. E.; Fulton J. L. Anal. Chem. 1995, 67, 2368.

(19) Molecular spectra & molecular structure. Infrared and Raman Spectra of polyatomic molecules; Herzberg, G.; Ed.: Van Norstrand Reinhold Ltd. Co.: New York, 1945; p 282.

(20) Vayssière, P.; Wipff, G. Phys. Chem. Chem. Phys. 2003, 5, 127.
(21) Rice, J. K.; Niemeyer, E. D.; Bright F. V. Anal. Chem. 1995, 67, 4354.

(22) Gorbaty, Y. E.; Bondarenko, G. V. Rev. Sci. Instrum. 1993, 64, 2346.